111 research outputs found

    Magnetic Characterization of Fischer-Tropsch Catalysts

    Get PDF
    INGENIERIE+JDAInternational audienceThis paper reviews recent developments in the application of magnetic methods for investigation of Fischer-Tropsch catalysts involving cobalt, iron and nickel. Magnetic characterization provides valuable information about catalyst reduction, sizes of ferromagnetic nanoparticles, chemisorption on ferromagnetics and topochemical reactions which occur with the catalysts during the genesis of the active phase and in the conditions of Fischer-Tropsch synthesis. The capabilities and challenges of the magnetic methods are discussed.Cet article passe en revue les développements récents dans le domaine de la caractérisation des catalyseurs Fischer-Tropsch à base de cobalt, de fer et de nickel par la méthode magnétique. La caractérisation magnétique fournit des informations précieuses sur la réduction du catalyseur, la taille des nanoparticules ferromagnétiques, la chimisorption, ainsi que sur les réactions topo chimiques qui se produisent avec les catalyseurs au cours de la genèse de la phase active et dans des conditions réactionnelles. Les possibilités et les limites de la méthode magnétique sont examinée

    Nanocomposite MFI-alumina and FAU-alumina Membranes: Synthesis, Characterization and Application to Paraffin Separation and CO2 Capture

    Get PDF
    Rouleau, L. Pirngruber, G. Guillou, F. Barrere-Tricca, C. Omegna, A. Valtchev, V. Pera-Titus, M. Miachon, S. Dalmon, J. A.International audienceIn this work, we report the preparation of thermally and mechanically resistant high-surface (24-cm2) nanocomposite MFI-alumina and FAUalumina membranes by pore-plugging synthesis inside the macropores of α-alumina multilayered tubular supports. The MFI membranes were prepared from a clear solution precursor mixture being able to easily penetrate into the pores of the support. The MFI membranes were evaluated in the separation of n-/i-butane mixtures. The synthesis reliability was improved by mild stirring. The most selective MFI membranes were obtained for supports with mean pore sizes of 0.2 and 0.8 μm. The MFI effective thickness could be reduced to less than 10 μm by impregnating the support with water prior to synthesis and by diluting the synthesis mixture. The best MFI membrane offered an excellent tradeoff between selectivity and permeance at 448 K, with separation factors for equimolar n-butane/i-butane mixtures up to 18 and n-butane mixture permeances as high as 0.7 μmol\cdots-1\cdotm-2\cdotPa-1.Furthermore, a novel nanocomposite FAU membrane architecture has been obtained by an original synthesis route including in situ seeding using a cold gel-like precursor mixture, followed by growth of the FAU material by hydrothermal synthesis in two steps using a clear solution of low viscosity. This new membrane showed interesting performance in the separation of an equimolar CO2/N2 mixture at 323 K, with CO2/N2 separation factors and mixture CO2 permeances up to 12 and 0.4 μmol\cdots-1\cdotm-2\cdotPa-1,respectively

    CYLD Enhances Severe Listeriosis by Impairing IL-6/STAT3-Dependent Fibrin Production

    Get PDF
    The facultative intracellular bacterium Listeria monocytogenes (Lm) may cause severe infection in humans and livestock. Control of acute listeriosis is primarily dependent on innate immune responses, which are strongly regulated by NF-kappa B, and tissue protective factors including fibrin. However, molecular pathways connecting NF-kappa B and fibrin production are poorly described. Here, we investigated whether the deubiquitinating enzyme CYLD, which is an inhibitor of NF-kappa B-dependent immune responses, regulated these protective host responses in murine listeriosis. Upon high dose systemic infection, all C57BL/6 Cyld(-/-) mice survived, whereas 100% of wildtype mice succumbed due to severe liver pathology with impaired pathogen control and hemorrhage within 6 days. Upon in vitro infection with Lm, CYLD reduced NF-kappa B-dependent production of reactive oxygen species, interleukin (IL)-6 secretion, and control of bacteria in macrophages. Furthermore, Western blot analyses showed that CYLD impaired STAT3-dependent fibrin production in cultivated hepatocytes. Immunoprecipitation experiments revealed that CYLD interacted with STAT3 in the cytoplasm and strongly reduced K63-ubiquitination of STAT3 in IL-6 stimulated hepatocytes. In addition, CYLD diminished IL-6-induced STAT3 activity by reducing nuclear accumulation of phosphorylated STAT3. In vivo, CYLD also reduced hepatic STAT3 K63-ubiquitination and activation, NF-kappa B activation, IL-6 and NOX2 mRNA production as well as fibrin production in murine listeriosis. In vivo neutralization of IL-6 by anti-IL-6 antibody, STAT3 by siRNA, and fibrin by warfarin treatment, respectively, demonstrated that IL-6-induced, STAT3-mediated fibrin production significantly contributed to protection in Cyld(-/-) mice. In addition, in vivo Cyld siRNA treatment increased STAT3 phosphorylation, fibrin production, pathogen control and survival of Lm-infected WT mice illustrating that therapeutic inhibition of CYLD augments the protective NF-kappa B/IL-6/STAT3 pathway and fibrin production

    VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis

    Get PDF
    Context. Until recently, the 3D shape, and therefore density (when combining the volume estimate with available mass estimates), and surface topography of the vast majority of the largest (D ≥ 100 km) main-belt asteroids have remained poorly constrained. The improved capabilities of the SPHERE/ZIMPOL instrument have opened new doors into ground-based asteroid exploration. Aims. To constrain the formation and evolution of a representative sample of large asteroids, we conducted a high-angular-resolution imaging survey of 42 large main-belt asteroids with VLT/SPHERE/ZIMPOL. Our asteroid sample comprises 39 bodies with D ≥ 100 km and in particular most D ≥ 200 km main-belt asteroids (20/23). Furthermore, it nicely reflects the compositional diversity present in the main belt as the sampled bodies belong to the following taxonomic classes: A, B, C, Ch/Cgh, E/M/X, K, P/T, S, and V. Methods. The SPHERE/ZIMPOL images were first used to reconstruct the 3D shape of all targets with both the ADAM and MPCD reconstruction methods. We subsequently performed a detailed shape analysis and constrained the density of each target using available mass estimates including our own mass estimates in the case of multiple systems. Results. The analysis of the reconstructed shapes allowed us to identify two families of objects as a function of their diameters, namely “spherical” and “elongated” bodies. A difference in rotation period appears to be the main origin of this bimodality. In addition, all but one object (216 Kleopatra) are located along the Maclaurin sequence with large volatile-rich bodies being the closest to the latter. Our results further reveal that the primaries of most multiple systems possess a rotation period of shorter than 6 h and an elongated shape (c/a ≤ 0.65). Densities in our sample range from ~1.3 g cm−3 (87 Sylvia) to ~4.3 g cm−3 (22 Kalliope). Furthermore, the density distribution appears to be strongly bimodal with volatile-poor (ρ ≥ 2.7 g cm−3) and volatile-rich (ρ ≤ 2.2 g cm−3) bodies. Finally, our survey along with previous observations provides evidence in support of the possibility that some C-complex bodies could be intrinsically related to IDP-like P- and D-type asteroids, representing different layers of a same body (C: core; P/D: outer shell). We therefore propose that P/ D-types and some C-types may have the same origin in the primordial trans-Neptunian disk

    Cold case : the disappearance of Egypt bee virus, a fourth distinct master strain of deformed wing virus linked to honeybee mortality in 1970’s Egypt

    Get PDF
    In 1977, a sample of diseased adult honeybees (Apis mellifera) from Egypt was found to contain large amounts of a previously unknown virus, Egypt bee virus, which was subsequently shown to be serologically related to deformed wing virus (DWV). By sequencing the original isolate, we demonstrate that Egypt bee virus is in fact a fourth unique, major variant of DWV (DWV-D): more closely related to DWV-C than to either DWV-A or DWV-B. DWV-A and DWV-B are the most common DWV variants worldwide due to their close relationship and transmission by Varroa destructor. However, we could not find any trace of DWV-D in several hundred RNA sequencing libraries from a worldwide selection of honeybee, varroa and bumblebee samples. This means that DWV-D has either become extinct, been replaced by other DWV variants better adapted to varroa-mediated transmission, or persists only in a narrow geographic or host range, isolated from common bee and beekeeping trade routes

    High temperature behavior of MFI-based membranes: comparison of film like and nanocomposite membranes

    No full text
    internationalInternational audienc
    corecore